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We consider a scenario where a population of customers is spatially distributed
in a region which is served by two wireless service providers that offer Internet
Access via two noninterfering technologies: one having a uniform coverage over
the region (e.g. WAN), and the other, a limited coverage (e.g. WiFi “hotspots”).
We assume that customers are equipped with “dual mode” wireless commu-
nication devices that have the capability to select which among the available
providers to use. We introduce a stochastic geometric model for the locations of
customers and providers’ access points and a utility-based mechanism modeling
how devices select among providers. In particular, we assume that each device
makes greedy decisions at random times, i.e., selects the available provider of-
fering the highest utility at that time. We demonstrate that this process may have
multiple equilibria, and prove that the system will almost surely evolve to one of
the equilibrium configurations, starting from any initial configuration for users’
choices. We also provide conditions under which the set of equilibria is relatively
“tight” — in this case the equilibrium configuration of agents’ choices is "maxmin
fair" and thus is desirable if providers wish to cooperate in providing users with
worst case performance guarantees. As an application of our framework we ana-
lyze the WAN and WiFi competition in an asymptotic scenario where the service
zones of WAN provider are much larger than those of WiFi access providers.

3G, WiFi, multi-mode devices, decision making, heterogeneous wireless net-
works, multi-provider wireless networks, competition, equilibria, performance,
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Introduction

Moving decision-making from access points to communication devices pro-
vides a path to achieving scalability in future complex and diverse networking
landscapes [1]. Thus, we believe that increasingly, end-nodes will have the
capability to use multiple communication modes to transfer data among them-
selves and/or connect to the wired network. For example, a “dual-mode” phone
may be able to connect to a wide area cellular network or to an IEEE 802.11
LAN access point [2]. Users of such devices are able to decide which mode of
communication they will use. In fact, such decision-making would likely be
carried out by a software “agent” driven by users’ preferences or engineering
design goals. For example, decisions could be based on proximity, amount
of interference, quality of service, or, more abstractly, based on a utility func-
tion capturing a user’s valuation for the available services and their respec-
tive costs. Furthermore, decisions might be based on “local” estimates and/or
“global” signaling from providers, e.g., a “price” signal. Through such signals,
the providers can guide agent’s local decisions towards ones that are system or
socially optimal.

Giving such freedom of choice to end-nodes is likely to affect system perfor-
mance, and will result in competition among devices for the best resource (e.g.
access point) as well as competition among providers to get a larger share of
subscribers. This paper is a first step towards understanding such competition.
We consider a scenario where a spatially distributed population of customers
are equipped with dual mode devices and are served (on the downlink) by two
wireless service providers. We assume that one of the providers utilizes a wide
area network (WAN) technology, e.g. 1S95, whereas the other provider uses
a set of non-interfering wireless local area network access points (APs) e.g.
IEEE 802.11 (WiFi “hotspots”). Our objective is to develop a framework to
analyze the interplay among the agents’ decision rules, technological aspects,
such as coverage and aggregate bandwidth available at the access points, and
the densities of agents and access points, will affect the ability of providers to
compete for a share of subscribers.

In Section 1 we formulate the stochastic geometric model for providers’
service zones and define utility-based decision rules. In Section 2 we prove
convergence to equilibrium configurations for agents’ decisions, and then in-
vestigate the properties of the equilibrium in Section 3. Lastly, in Section 4 we
will demonstrate how our results can be used to estimate the regimes where
the hotspots and WAN APs are competitive, i.e. the majority of agents exert
nontrivial choices.
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1. Model for the network geometry and agents’ decisions

To model the geometry of the network we use the stochastic-geometric
framework introduced in [4]. The basic idea is to represent the locations of
subscribers and access points as realizations of spatial point processes (e.g.
Poisson) and the service zones associated with the access points as functionals
of the realizations of these processes. The main advantage of such models is
that they allow one to analytically capture the effect of spatial variations in the
system based on a reduced set of salient parameters.

We will use three point processB$, N" andMn", to represent the locations
of agents, hotspots and WAN APs respectively. At this point we do not restrict
ourselves by considering particular distributions those processes might have.
Instead, we require all three of them be simple processes (see, e.g. [5]) so that
the location of each WAN or hotspot AP is not shared by any other AP. Below
we define some notation that will be used throughout the paper.

w = {a}>,, M= {h}p_, andn” = {wn}>_, — represent realizations
of M2, MM andnY on the plane. For brevity, we useto denote both the
agent and its location (similarly for hotspots and WAN APs).

= T((A) —all points of the realization of a point proces§l that fall within
the setA.

n \T[(A)\ — the number of points of the realizatiorthat fall within the set

= |x| —the length of vectox € R?.
= B(x,r) —the disc of radius centered at point € R,

=V —the Voronoi cell of WAN APw, € Tt¥. (The Voronoi cell associated
with the pointy; of realizationttis defined as the set of points on the
plane that are closer §g than to any other poing; € 1\ {y;}.)

= V" —the Voronoi cell of hotspot ARy € Tt".

s K= {k: heem(V¥)} — the indices of hotspots located within the
Voronoi cellVy).

" 32 — the service zone (see below) of hotspot AP

= S —the service zone of WAN AR,

We will refer to the “service zone” of WAN or hotspot AP as the set of locations

on the plane, that the AP can serve. We assume that agents which fall within the

service zones of several APs are able to choose which AP to connect to. In the

next few paragraphs we describe our models for the service zones associated
with each AP as well as the criterion each agent uses to connect to a particular

access point.
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Figure 1.1. (a): Boxes represent APs of the WAN provider, whereas triangles represent the
APs of the hotspots. The coverage area of each box is modeled by its Voronoi cell, while that of
the triangles is modeled by discs of raddisentered at the triangleg): Voronoi cell of WAN

AP “augmented” with hotspots’ service zones as the service zone for this WAN AP.

Service zones for hotspots.  Note that the coverage of a hotspot is usually
limited due to constraints on transmit power of devices operating in unlicensed
spectrum. Thus with each hotspot AR< 1" we associate a didg(hy,d) of

some radiugl > 0 and assume that the service fréis feasible only within

this disc (see Figure 1.1 (a)). In addition, we assume that agents desiring to
connect to a hotspot will connect only to the closest feasible hotspot, which
yields a service zonég for hotspot APhy given by:

L2V nB(h,d).

Service zones for the WAN. By contrast with hotspots, WAN service covers

all spatial locations. Still, the definition of service zones depends on the under-
lying technology. For instance, in CDMA-based technologies the association
of mobiles with APs is different for the up- and down-links [6]. Moreover,
the service zones corresponding to two different WAN APs are in general not
disjoint and, in fact, overlap to permit soft handoffs.

Appropriate models for CDMA service zones have been recently considered
in [7], [8]. In particular the authors have shown that under some conditions
(large enough power at APs, large attenuation) the service zone associated with
any AP converges to its associated Voronoi cell. This suggests that Voronoi
cells might be a reasonable model for service zones.

Note, however, that if we represent the service zones as Voronoi cells, agents
that belong to hotspots that are crossed by the boundary of a Voronoi cell asso-
ciated with some WAN AP might be choosing between this hotspot and one of



Modeling Competition among Wireless Service Providers 5

two WAN APs. This poses certain problems in the analysis of the model, be-
cause agents’ decisions interact across WAN AP service zones. To overcome
this difficulty we shall impose a constraint that each agert T@ selects be-
tween the closest hotspot AR (if it is covered by its service zone) and the
WAN AP wp, which containg in its service zone (see Figure 1.1 (b)). When-
ever the hotspots’ service randas much smaller than the average size of a
WAN cell, this assumption will not significantly affect our results. We will
define the service zone of WAN ARy, as the “augmented” Voronoi caly:

s-wU(Ug)\( U s

keXm l€UnzmKn

Assumption 1.1. The service zones), Yme N, contain an a.s. finite number
of agents and hotspots.

Agents’ selection criterion, Let Cy, be the subset d8}, that includes only
the area where agents have the option to choose among a hotspot and WAN AP

Wi 8 U g

ke X m

and letCy = S\ Cn. We assume that any agents whose location i€qin
can not make a choice and thus connect to the WANWP By contrast, an
agentg; € Cy, is also covered by some hotsppis service zone and can choose
betweereitherconnecting tdy or the WAN APw,.

Consider an agerg; that is connected to a WAN AP at time We model
her level of satisfaction with the service via a the utility functidfi(N"(a;,t))
of the total number of agent$”(a;,t) that at timet are connected to the same
WAN AP as ageng;. Similarly, we assign a utility functiob"(N"(a;,t)) to
an ageng; to model her level of satisfaction if she is connected to a hotspot,
whereN"(a;j,t) denotes the total number of agents that are connected at time
to the same hotspot as the agent Thus, in this framework, utility functions
are only “congestion” dependent and independent of positions of agents rela-
tive to the access poiritsin the sequel we will use the following assumption
for the utility functions:

Assumption1.2. U¥(-) : R* — R andU"(:) : R* — R are continuous, mono-
tonically decreasing functions.

Now we describe how we model the decision process in this system. We
postulate that an ageat € Cy, switches at timé to the WAN APwy, from its
hotspot if and only if she was connected to this hotspot AP at tinend

UW(NW(a,t*) + 1) > U“(N“(a,t*)) ,
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wheret™ refers to the time immediately prior to Similarly, the agenty
switches to a hotspot AP at tinieéf and only if she was connected to a WAN
AP att~ and

Uh<Nh(aa,t‘)+l> > U (N"(a,t))
Note that we break ties in favor of hotspots.

Assumption 1.3. Agents’ decision times withid,, are given by a simple point
processP, with realizationsg, which obey the following:

= @y almost surely contains infinitely many pointsfin, i.e. @m = {Sc}r_1,
wheresc € Rt fork=1,2, ...

= each point ofg, is associated with a decision time for a unique agent
within Cy,

= apoints € @y is a decision time of the ageate C,,, with somepositive
probability p;, which possibly depends on realizatigp up to timesg
and the history of agents choices up to tisee

Assumption 1.3 postulates that only one agent wi@jrcan make decision
at a time, each agent has unlimited opportunities for decision making, and any
decision time with some positive probability is associated with a particular
agent.

2. Convergence to equilibrium.

We call a particular configuration of agent's choices an equilibrium con-
figuration, if and only if the system remains in this configuration indefinitely
provided it starts in this configuration.

Proposition 2.1. (Convergence to equilibrium) Consider the service zone
¥ for a particular fixed realizationr®, 1" and Y. Then under Assump-
tions 1.1-1.3, given any initial configuration of connections at time0, the
system converges a.s. to an equilibrium configuration-aseo.

Here we will give the essential idea of the proof whereas the rest of the de-
tails we placed in Appendix 1.A.1. Note that the dynamics of the configuration
of agents’ decisions i}, follow a continuous-time Markov chain with state
X(t) :={X(a,t)| & € ™(Gn)}, whereX(a;,t) € {0,1} denotes the “connec-
tion state” of the agerg; at timet. It takes the valu@ if the agent is connected
to a hotspot, and if she is connected to a WAN AP. We shall classify de-
cision times for this chain as “up”, “down” and “stay”, corresponding to an
agent switching from a hotspot to the WAN AP, vice versa, or staying with her
current choice. For simplicity we uniformize the continuous time chain, and
focus on a discrete-time Markov chain capturing the state at decision times.
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We shall denote these times \8a= 1,2,.... The transition probabilities for

the discrete-time Markov chain are comprised of two factors: the probability
that a particular agent reconsiders her decision at that time and whether, given
the current configuration, the agent would change providers.

By Assumption 1.1, each service zone contains an a.s. finite number of
agents, thus there is an a.s. finite number of possible configurations for agents’
choices. It follows that some of the states must be revisited by the chain in-
finitely often. To show the convergence of the process to an equilibrium, it
suffices to construct a feasible path for the chain evolution which starting from
any initial configuration hits an equilibrium state, and has a positive probabil-
ity of occurring. Since the state space is a.s. finite, and at least one state is
visited infinitely often, this guarantees that the chain is transient, i.e. reaches
an equilibrium state with probability 1.

Below we describe the steps of an algorithm to construct a patbnsist-
ing of a sequence of transitions for the statés), which, starting from any
arbitrary configuration of agents’ choic&40), ends up in an equilibrium con-
figuration after a finite number of steps. LA&(s) denote the set of agents that,
given the configuration at timg could make “up” transitions and’(s) the
set of agents that can make “down” transitions. We describe our algorithm in
terms of the pseudo-code shown in Table 1.1. Note that the algorithm assumes
that an agent making her decision at time slot 1 is basing this decision by
observing the state of the system prior to that time, i.e. at §mé.

In short, after initialization, the algorithm alternates between phases where
“up” and “down” transitions occur. During the Up-transition phase only the
“up”-switches occur, and agents performing these transitions are selected from
the most “congested” hotspots. This phase ends once the set of agents able to
perform the “up” switches is empty. At that time the algorithm switches to the
Down-transition phase, where at most one agent performs a “down” switch.
If an agent performs an “up” switch at tinsewe track the number of agents,
K(s), that shared the hotspot with this agent prior to her switching atdime

To show that this algorithm finishes in finite time in Appendix 1.A.1 we
prove thatK(s),s=1,2,... is a non-increasing sequence that at each time
bounds above the number of agents within each hotsp&{inThus since
K(-) is integer valued and non-negative, it must converge to some k&]ure
an a.s. finite time. Onck(-) converges, we prove that only down transitions
can occur, and since there is an a.s. finite number of agents in each WAN APs
service location, an equilibrium must be reached in finite time.

In summary, we have shown that from any starting configuration there exists
a path,?, that reaches an equilibrium state. Moreover, by Assumption 1.3
the overall probability of the patf® is strictly positive. Since the state space
is finite, there must be a state which is visited infinitely often. Whence the
Markov chain will necessarily eventually hit an equilibrium state.



Initialization:
s=1andx(s) = X(0)
go to Up-transition phase

Up-transition phase:
repeat:
{ chooseaj = argmax, c au(s) NM(a;,s)

K(s) :=N"(aj,s)
letaj make an “up” transition
update the stat&(s)
s:i=s+1}

until A%(s) =0

go to Down-transition phase

Down-transition phase:
if Ad(s) # 0:
{ choose anyaj € Ad(s)
letaj make a “down” transition

update the stat& (s)
K(s):=K(s—1)
s:i=s+1

go to Up-transition phase }
otherwise: done

Table 1.1. Pseudo-code for constructing the pdtltonverging to equilibrium.
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3. Structure of equilibrium.

In this section we will give a characterization of the system state, i.e., config-
uration of agents’ decisions, define a notion of uniqueness, and analyze under
what conditions the system equilibrium is unique. We first introduce some
additional notatiofi

= M= ()| — the number of agents located within the service zone
of WAN AP w,.

= M] =|m()| — the number of agents located within the service zone of
hotspoth.

= M = |m?(Cn)| — the number of agents located with@y, i.e. agents
that can make choices.

= MY =M% — MY — the number of agents located with@g,, i.e. the
agents that canot make choices.

= Hp=|m(Sk)| — the number of hotspots located within the service zone
of WAN AP w,.

= anf”p’nw 2 {X(a&)| & € T®(C)} — denotes the system configuration in

service zone&}, associated with a fixed realizatiof, ™ andm". Here
X(a) € {0,1} takes the valu@ if agenta; is connected to a hotspot, and
1if she is connected to a WAN AP.

s T = Tn(T8, 10", ") — the a.s. finite set of possible system configurations
(states) irSY. for a given realization?, " andm.

= En—the set of all system configuratioog ‘7, that correspond to equi-
libria in Sf,.

m Fn= fm(na,rﬂ",n‘”) — subset ofE,, which consists of only “fair” equi-
libria (see below).

= Ny (c) —the number of agents that connect to WAN WR in configura-
tionc e I,

" NQ(C) — the number of agents that connect to hotspothph configu-
rationc € 7.

= (U")~1(.) —unique and decreasing, by Assumption 1.2 inver&&tf).
- (U h)—l .
= G2

s J(-) £ (UY)~toUN(-) —nondecreasing composition@f*") ~* andu"(-)

(-) — unique and decreasing inverse (- ).
(

UM~1oU"(.) —nondecreasing composition@f") ~* andu"(.)
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Characterization of a configuration.  For any fixed realizatiom?, 1" and

1" consider only WAN APswy, that have at least one hotspot in their service
areas, i.e. Xy, # 0. For suchm we characterize the system configuration
¢ € T, for the service zon&), by a vectorNm(c) £ {NP(c)| k€ K}. The
vectorNpy(c) determines how many agents are connected to each hdispot
for k € K, in configurationc € 7p,.

Definition 3.1. We say that two configurations for agents’ choices character-
ized byNpy(c) and Npy(c') are equivalent, and writéy(c) ~ Npm(c), if the
components of the vectdi(c) are a permutation of those df(c').

Fair equilibria.

Definition 3.2. We say that a configuratione 7y, is “fair” if its characteri-
zationNm(c) = {N(c) |k € K} satisfies, for somk € Z*:

[ K=1<NM(o) <K, ifMP>K,
VKe Kpm: { NP(c) = M, otherwise

If cis also an equilibrium configuration we say thais a “fair” equilibrium.

We shall interpret this definition via Figure 1.2. The hexagonal region is
a schematic representation of the service z8jewhile the positions of the
cylinders represent the locations of hotspots. The height of each cylinder rep-
resents the overall number of agents that fall within the service zone of a par-
ticular hotspot.

Load

(# of agents at
hotspots) -
y

agents

/ choosing
WAN
K a— # of
agents
@ X
Sm Potspor
WAN LAN Sh
coverage hotspot’s k
area coverage

areas

Figure 1.2. Structure of a “fair” configuration.

Assume that the slicing plane in Figure 1.2 is one unit thick and its upper
surface is placed at integer-valued heigktgbove the surface d&}. Any
“fair” configuration has the following assignment of agents to APs:
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= All agents inS},\ Ciy connect to WAN ARwm,.

= A number of agents corresponding to the parts of cylinders that fall under
the lower surface of the slicing plane connect to their respective hotspots.

= A number of agents corresponding to the parts of cylinders above the
upper surface of the plane connect to the WANWR

= Finally, a number of agents corresponding to the parts of cylinders within
the slice connect to either their associated hotspots or WANvAP

In what follows, to avoid ambiguity we will always associate a fair configura-
tion f with the “cutoff” plane at level Kn( f) = maxc«, NP(f). Note, that in
fair configurationf the hotspots having more th&,(f) agents in their ser-
vice zones yield the “overload” to the WAN AR,. As a result the number
of agents connected to those hotspots is nearly the same, i.e. Kjtheror
Km(f)—1.

By the construction used to prove Proposition 2.1 we can always find a po-
sition of the slicing planek = Kj;,, and an assignment of agents corresponding
to the parts of cylinders at the slice, so that the connection configuratig in
is a fair equilibrium. This results in statemdntof Proposition 3.1.

Proposition 3.1. For any realizationr?, " and ¥ we have that:

() The set of all fair equilibria, %, is not empty.

(i) All fair equilibria have equivalent characterizations, i.e. for dll f’ € F,
Nm(f) ~ Nm(f').

For the proof of statement (ii) of Proposition 3.1, see Appendix 1.A.2.

Non-uniqueness of equilibrium.

Definition 3.3. For a particular realizationt®, " and ¥ we say that the
equilibrium inSY is unique if for anye, € € £y, we haveNpy(e) ~ Niy(€).

Note that agents’ decisions are discrete in nature, and unfortunately, this can
lead to multiple equilibria in the system, even when we understand uniqueness
in the weak sense of Definition 3.3. Below we show this via a simple example.
Observe that for all equilibrim configuratioes ., we must have that:

uh (NQ(e)+1) < UW(NrVnV(e)) andu” (NQ(e)) > UW(N,VnV(e)Jrl) (1.1)

for all k € K, such that the service zor# has an agent connected to the
WAN AP wy, and an agent connectedhg Also we must have that:

Uh<N|h(e)> > U"V(Nn"‘q’(e) v 1) ,
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for all | € K, such that the service zoﬁﬁ hasall of its agents connected to
h. Lastly,

uh(1) < UW<Nm(e)) , (1.2)

must be satisfied for ajp € X, such that all agents withiﬁg are connected
to Wiy, in equilibrium. It follows from (1.1) that:

G(Nm(e)) ~1<Nf(e) < G(N,YnV(e) + 1) , (1.3)

for hotspotshy € T"(SY) with at least one agent connected to the WAN WP
Note that, depending on the utility functions there can be more than one integer
solution to the inequalities (1.3). Consider, for example:

UPN)=N"F, U¥N)=N, (1.4)

wherea > > 0. In this caseG(N) = N%/B, and the gap between the right
and left hand side in (1.3) increases witl}(e). In other words, when the
number of agents, not covered by hotspots is large enough, there can be many
integer solutions to the inequalities (1.3). Hence, “unfair” equilibria can be
constructed easily from the fair one. For example we could switch some num-
ber L of agents from WAN APwy, to a particular hotspolty and the same
numberL of agents from some other hotspgptwithin the same WAN ARvy,.

Note that this procedure would not change the number of agents connected to
the WAN AP. IfL is selected so that the!(e) — L andN/'(e) + L are still within

the bounds (1.3), this procedure would result in a feasible equilibrium which
is not equivalent to the fair one.

Conditions guaranteeing uniqueness and fairness. One might ask un-

der what conditions the equilibrium 8} is unique. The following result
assumes that the utilities have a particular property, and that the cells of the
WAN provider are large enough to guarantee that a sufficiently large number
of agents connects to the WAN AP in equilibrium.

Proposition 3.2. Suppose that there exiftssuch that for allN > N
G(N+1)—G(N) <1, (1.5)

and assume that the number of agents that can not make choices in service
zoneSy, satisfies:
ME >N. (1.6)

Then, the equilibrium irgy, is unique and fair.

We prove this proposition in Appendix 1.A.3. In general, if the property (1.5)
holds then it must be the case that the utility function associated with con-
nections to hotspots decrements faster in the number of connected agents than
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the utility associated with connections to the WAN‘A®ne such example is
given by (1.4) with > a > 0.

System performance in equilibrium. Let us defineU™"(c) to be the
minimum over the utilities of agents withi#}, that choose according to con-
figurationc € 7r,. We refer tdJ7""(c) as the utility of the bottleneck agent for
the configuratiorc.

Proposition 3.3. If the equilibrium inSY, is unique, thet™"(c) < UMN(f),
forall f € Fnyandc e T,

We prove this proposition in Appendix 1.A.4. Thus, when equilibrium con-
figuration of agents’ choices is unique, it would maximize the utility of the
bottleneck agents over all possible configurations of agents’ choices. When
agents’ utilities are associated with a congestion-only-dependent performance
metric, utility based choice mechanism would realize equilibria that are favor-
able from the point of view of worst case performance. We further explore the
performance aspect of a multi-provider scenario in [11].

4. Estimation of competitiveness of WAN vs WiFi
hotspots.

In this section we discuss how to compute the fractions of agents that are
connected to WAN APs and hotspots in equilibrium. We choose these fractions
to be our metric to assess the competitiveness of one provider versus another.
For simplicity of exposition we assuf¢hat 1" is a deterministic process
such that the Voronoi cells associated with each WAN AP are geometrically
similar and have the same ameaWe further assume that the proces@8sind
M2 are stationary Poisson processes with densiflemd\? respectively.

The non-uniqueness of equilibria poses certain difficulties in analyzing the
model for arbitrary utilities, densities and cell sizes. Note that in practice, the
sizes of WAN service zones typically would exceed that of hot$patsus, to
simplify our analysis we will study the system where the size of WAN service
zones,a is large enough to contain a large number of agents and hotspots.
Intuitively, one might expect that when the WAN service zones grow in area,
the set of different equilibria becomes tighter, i.e., a type of the Law of Large
Numbers making the system more amenable to analysis. In the next paragraph
we demonstrate that this intuition is indeed correct.

Setup for asymptotic analysis.. ~ We consider a collection of deterministic
point processe$lM"?} indexed bya € R* where each represents the spatial
locations of WAN APs that are increasingly spread out. In particular, we sup-
pose that the area of the Voronoi cell associated with any pdirt 1} is equal
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to a, and leta grow. Let us also assume that for each- 0, ™® contains a
pointwg at the origin.

In what follows we will consider the service zones of WAN A¥ and
we will use the same notation as before to refer to the number of agents and
hotspots falling within the service zone of the WAN A < 1", but indicate
the dependence on the areavia the corresponding superscript. Thus, for
example we will writeH§' to indicate the number of hotspots that fall within
the service zon&)"® of the WAN APw&. In addition, we us&f[Aq] to denote
the expectation of the quantit§, associated with a typical hotspht (see,
e.g. [10]).

For fixedA" andA? the service area of each WAN AP will have to support
a larger (roughly linear i) number of users as grows. Therefore, we will
assume that the WAN resources also scale withThis leads to a scaling
requirement on the utility function associated with connecting to the WAN.
LetU™Y(-) denote the utility function associated with connecting to the WAN
when the area of a Voronoi cell of any WAN APds and assume that"9(-)
satisfies Assumption 1.2 for utility functions. DefigfgN) = (U™%)~1oUN(.)
(whereU"(-) is independent ofi) and assume the following:

Assumption4.1. The scaling 08%(N) with a is such that:
1 J%(N) =aj(N) foranyN € N,
2 limy_o j(N) = o0,

3 There exist\, such thatj—1<(N+ 1)/0() - j—1<N/a) <1, forallN >
N and eacho > 0.

4 For any integeK > 2, u(K) # j(K), j(K—1), where

U(K) = AN | \ngh [(Mg —K+1)1 {MSzK}} @

The interpretation of these assumptions are as follows. Condition 1 means
that the resources of WAN APs scale linearly in the ameaf their service
zones. For example, we might havé(N) = BWh andU%4(N) = %, in which
casel®(N) = ‘%WN. The second condition follows if, as more agents connect
to a resource, the utility of those agents is strictly decreasing to zero. The third
condition will allow us to use Proposition 3.2 to argue that the equilibrium in
S is unique with probability approaching 1 as— . Finally, the last con-
dition is technical (see Appendix 1.A.5), and satisfied for the cases of interest.

We study the asymptotics of this system in Appendix 1.A.5. The results of
our study are summarized in Theorem 4.1. Here when we say that areévent
happens with high probability (w.h.p.) we mean thigty ... P(E®) = 1.
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Theorem4.1. Consider any realization of the Poisson point proce$$gand

M" and the sequence of deterministic procesd@¥®} with Voronoi cells of
areaa and each with a typical cell centered at the origin. Under the scaling
Assumption 4.1 we have:

1 The equilibriumfg in %”“ is unique and fair w.h.p.
2 The largest number of agents connected to each hotspot in this equilib-
rium, Niva( &) = maxc xs NJ(f§') has a limit:

P ha say _ pheo
OI(ILHOO Nmax( fO ) - Nmax:

for some integeNfs > 0.

3 We have thaNrr,‘{;’fX > 0if and only if j(1) < A% in which case it is given
by the largest integer solution fa¢ > 1 of the inequality

u(K) > j(K), (1.8)
whereu(K) is given by (1.7).

The basic idea of the proof is to leverage the analogs of the Law of Large
Numbers for functionals on random sets, e.g. Voronoi cells, which have dis-
tributions dependent on realizations of point processes. We also show that
fluctuations from averages for the quantities of interest do not grow “too fast”
as the area of the WAN service zones grows. This allows us to express the
position of the asymptotic “cutoffNr?f;’fx, in terms of averages of functionals of
the realizations ofi" anda.

Based on Theorem 4.1 the analysis of competition when the WAN cell sizes
are “large” reduces to comparing the numbkig = K* to the average number
of agents falling within the service zone of a typical hotspot. In particular, if

A2(1— e ')
AR ’
then hotspots retain most of the agents that fall within their service zones in

equilibrium. We classify this case as hotspots effectively competing with the
WAN. On the other hand if

K* > Ej [Mg} - (1.9)

)\a(l _ ef)\hndz)
AD ’

the hotspots yield most of their agents to the WAN APs in equilibrium. In this
case we say that hotspots are not competitive with respect to the WAN. Using

K*< (1.10)
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Theorem 4.1, we can suggest the following heuristic approach to estimate the
value ofNP_.. In general one has to solve fi§r> 0 the equation:

uw (Aa|vye-A““\d|2+AhE3 [PO(K)]> —U"(K), (1.11)

wherePy(K) = (M — K + 1)1{M82K}' Note that since the left side of (1.11)

is monotonically increasing i and the right — monotonically decreasing, the
solution either does not exigK{ = 0) or is unique, when it exists. Unfortu-
nately, there is no closed form expression for the t&fiPo(K)] and hence
simulation has to be used to estimate it. However, to test if hotspots are not
competitive with respect to the WAN one could use the following simple crite-
rion. Clearly, (1.10) holds if the solution to:

UYA3V| = AKV]) =U"(K), (1.12)

falls much below the valud?/A"(1— e "@*). Note that this allows for a
simple intuitive interpretation. The number of agents and hotspots occupying
WAN service zone tends t?|V| andA"|V| respectively whenV| is large.

The number of agents connected in equilibrium to hotspots tenh&\oK,
whenevelK < A2E|g)|, since then we can assume that each hotspot has ex-
actly K agents connected to its AP in equilibrium. Thus the number of agents
connected to the WAN AP must tend to:

AV =AKV ],

once the size of the WAN service zone gets large enough. Thus, (1.12) follows
by equating the utility of agents that are connected to the WAN AP and utility
of the ones that are connected to hotspots.

5. Conclusion

To summarize, we have developed a stochastic geometric model for a sys-
tem where subscribers with dual mode devices select among two noninterfer-
ing wireless service providers — a WAN provider and a second provider (or
aggregator) of LAN hotspots. Our model is of interest in that, on the one
hand, it captures wireless providers using technologies that might have dif-
ferent capacity and coverage, and on the other hand it captures the role of
subscribers decision-making mechanisms in determining the eventual equilib-
rium. Assuming each subscriber’s decision-making agent makes greedy de-
cisions, based on comparing two “congestion” dependent utilities, at random
times, we show that an equilibrium configuration would eventually be reached.
Further we have characterized such equilibria and shown that they are likely to
be close to the fair equilibrium, which corresponds to slicing the excess loads
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on hotspots, and shifting these to the WAN. In an effort to get numerical es-
timates for the level at which this slicing occurs, we developed an asymptotic
result for the case where WAN service areas are large, which would permit an
evaluation of this setting.

The results in this paper can be viewed from different perspectives. On the
one hand they permit an evaluation of the competitiveness of the two providers
to attract subscribers in their service areas. On the other, they permit a study of
how to design decision making mechanisms, i.e., appropriate utility functions,
to realize equilibria that may be desirable equilibrium for the overall system.
The highlight of this paper is a characterization of such equilibria, that would
permit further consideration of the performance and network design implica-
tions of wireless systems where users are capable to switch among multiple
providers, depending on the key parameters of the system.

Appendix
1. Details of proof of Proposition 2.1

Proof. Here we show tha{(s) is a non-increasing sequence. Indeed, during the execution of an
Up-transition Phasé (s) may change, but can only be reduced, since only ager4(s), and

which belong to the most congested hotspots, are selected to make a transition. Now suppose
that an Up-transition phase finished at tim¢henK (T — 1) is the number of agents that shared

the hotspot with the last eligible agent prior to her “up” transition. Consiges Ad(r), an

eligible agent for a down transition. Note that for any such agent it must be the case that

N"(aj, 1) <K(1—1)-2 (1.A.1)

otherwise the agent that switched up at time 1 could not have improved her utility. Indeed,
suppose at time— 1, the agent; switched “up”, then the following inequality must have been
true:

UW(NW(a,-,T—l)+1> >u“<Nh(a,r—1)>. (1.A.2)

Note thatNY(aj, 1) = N¥(g,T— 1)+ 1, since botte; anda; belong to the same WAN service
zone and no other transitions have occurred in the interim. Thus if

U*(N(aj,1)) U (N"(a,1) + 1)

this would contradict to (1.A.2) unles¥"(aj,1) < N"(aj,1—1) —2=K(1—1) - 2. Thus
an agent that makes a “down” transition right after an Up-transition phase can not increase the
number of agents on her hotspot beydtd — 1) — 1. Whence upon reentering the Up-transition
phase, if up switches occur they can again only decrease the vai(e)of

Note, that if one or more “down” switches occur in sequence without any intermediate “up”
transitions, it still remains the case théts) must be an upper bound on the number of agents
sharing a hotspot, of an agent that chooses to make an “up” transition &t tintkeed, assume
that the last Up-transition phase, that had an “up” switch, has finished at tinie< sand the
agenta; has switched “down” at time. The agent'sy’s switch has occurred due to the fact
that:

U"(N"(@,1)) <U"(N"(@.1)+1)
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Note that for an agera; switching “down” at timet + 1, we haveNh(aj ,T+1) > Nh(aj ,T)and
N"(aj,T+1) = N¥(a;,T) — 1. Hence,

U™(N%(aj,t+1)) <UM(N"(aj,t+1)+1)

could only be feasible iNh(aj,H— 1) < NM(a;, 1), by monotonicity of utilities. But then, in
view of (1.A.1):
N"(aj,T+1) +1<K(1) - 1.

By induction, we can show that ih+ 1 such “down” transitions took place without any inter-
mediate “up” transitions, then:

N(a, T+m)+1<K(T)—1

wheregy is the agent that has performed the last “down”-transition.

ThusK(s) is a non-increasing sequence which bounds the number of agents connected to
any hotspot at time. Also sinceK(-) is integer valued sequence, it must converge to some
valueK}, in a finite time. Oncé (-) converges, only down transitions can occur, and since there
is an a.s. finite number of agents in each WAN APs service location, an equilibrium must be
reached in finite time. O

2. Proof of Proposition 3.1

Proof. Consider any fair equilibrium configuratioh € #yn and letKn(f) = maxe NL‘(f)
give the level of the corresponding slicing plane (see Figure 1.2). We will first show that for any
two fair equilibriaf and f’ we have thaKm(f) = Kn(f').

We show this by contradiction, suppose, in fact that there éxiEte Fm such thakm(f) #
Km(f'). Without loss of generality assume th@h(f) > Km(f’). Note that in this case for some
| € K mwe haveN!'(f) = Km(f) > 1. Considering the hotspdi, we get

Uh<Km(f)> > UW(NY(f)+1) (1.A.3)

since otherwise an agent connected to this hotspot would choose to switch to WARN,AP
which would contradict the fact thdtis an equilibrium. Now, for equilibriunf’ all hotspots
have fewer than or equal (') < Km(f) — 1 agents, soin particulaﬂlh(f’) <Km(f)—21.1t
follows by adding 1 to both sides and the fact ttié?() is monotonically decreasing that:

UNNP(F) +1) zuh(Km(f)). (1.A.4)

At the same time, sincEm(f’) < Km(f) it follows that Ny () > N¥(f) + 1. Using the fact
thatU™() is monotonically decreasing we have that

UY(NI(F)+1) > UY(NS("). (1.A.5)
Now putting (1.A.3),(1.A.4) and (1.A.5) together we have that
UNP(F) +1) > UM(NR(F))

which implies that undef’ an agent on WAN ARv;, would choose to switch to hotspbi.
This contradicts the fact thdt is an equilibrium. Thus we conclude that for afy 7, we
haveKm(f) = K, for some integeKy,.
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In order to show that all fair equilibria are equivalent, we first argue that for two fair equilibria
f/ £ f we must havé\¥(f) = N\¥ (/). Without loss of generality suppodt () > N (f)+ 1.
Then, for at least one hotspot, say N'(f') < N(f) — 1 which also implies tha/'(f) > 1.
For f to be an equilibrium we must have that:

UP(NP(F)) = UM(NB(T) +2) = UM(N(T), (1.A.6)

which follows from the fact that no agent in hotsfptvishes to switch to the WAN AP and our
assumption. Considering the hotspptinder the equilibrium configuratiofi we obtain:

UW(NY(F')) > Uh<N|h(f’) + 1) > UNNP(£)), (1.A.7)

which is the consequence of the fact that an ageht itonnected to the WAN ARy, has no
desire to switch to the hotspbit. Clearly, by monotonicity of utilities we have that (1.A.6) is in
contradiction to (1.A.7).

Thus we know that iff, f' € Fm, then we havéi(f) = N% (') andKm(f) = Km(f') = K,
for some integeKyy,. Next we show that all fair equilibria must have equivalent characteriza-
tions. LetR denote the number of hotspots3j that have at lead(;;, — 1 agents in their service
zones. The equilibrium number of agents connected to such hotspots is b&iyedrandK,
Now assume that < R of the R hotspots havé;, — 1 agents and the remainifi}—r hotspots
haveKp, agents, connected to their APs under the equilibrium configurdtioBimilarly, we
assume that’ < R hotspots hav&;;, — 1 agents in the equilibrium configuratioi. Equating
the total number of agents in the service z&}gn equilibria f and f/, we have that:

(K=1r+K(R-r)+ M+ NY(f)
ke K m, M<K —1

=(K-1r'+KR-1")+ MP -+ NW (£,
ke K m, M/ <Kp—1

SinceN(f) = N (f') this leads ta = r’, showing thalNy(f) ~ Nm(f). O

3. Proof of Proposition 3.2

Proof. By part (i) of Proposition 3.1 there exists a fair equilibrium3¥. Let f € m be one
such equilibrium and leim(f) = maXe« . NE(f). We will consider three cases based on the
value ofKi(f) and show that under the assumptions of the proposition, any other equilibrium,
e € Em has the same characterization.

Case 1: Kiy(f) =0.  Inthis case there is no agent§ which connects to a hotspot. If
there are no agents within any of the hotspots’ service zones, then it is nothing to prove, since
no agents make any choices. Otherwise, considering the equilibrium conditions for agents that
fall within some hotspot we have:

uvMY > uh). (1.A.8)
It follows that no other equilibrium configuration can exist. Indeedg §# f is some other

equilibrium configuration, we must haw¥'(e) # N(f), and thusN'(e) > 1 yielding N¥(e) <
M@ — 1. By Assumption 1.2 on utilities, we obtain:

UW(Mm> < UW(NrV,z(e)H) anduh(N,“(e)) <uh(). (1.A.9)
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Sinceeis an equilibrium, we should have:
UW(N,‘;]“(e) v 1) <uh (Nlh(e)) : (1.A.10)

since no agent iq*‘ wishes to switch to WAN ARvy,,. Combining inequalities (1.A.9) and (1.A.10)
we obtain:
UW(Mm> <uh@),

which contradicts inequality (1.A.8).

Case 2: 0 < Kn(f) = maXe,, ME. In this case we have that there are no agents in
Cm connected to the WAN ARim in configuratione and thus we havlim(f) = {Mf[k € K m}.
This can only be feasible if:

U™ (Mg ) <ulmp),
for k € K m. Using this inequality instead of (1.A.8) and following the steps similar to the Case
1 one can prove that no equilibriueexists, such thaﬂE(e) < ME for somek € X .

Case 3: 0 < Kn(f) < maXeg,, ME. Consider any other equilibrium= f and note
thatNy(e) > Mgm. Hence the inequalities (1.3) admit at most two integer solutions. It follows
that, for someK > 1 we have that:

K—1<N(e) <K,

for k€ K such tham > K and
NE(f) =My,
otherwise. Hence must be a fair equilibrium, characterized by the slicing plane at level

Km(e) = K. Since by par{ii) of Proposition 3.1, all fair equilibria are equivalent, we have,
thatN(e) ~ N(f). O

4. Proof of Proposition 3.3

For any configuratiort € 7, we will refer to agents that have utility equami”(c) as the
“bottleneck” agents. Let € 7m be a configuration that maximizes utility of a bottleneck agent
andc ¢ Fm. We will show thatuM"(c) < UMiIn(f), for all f € X ,,. Since, by assumption of
the proposition, all fair equilibria i1g}, are equivalent, we have tha(f) = N ('), for all
f, f’ € Fm. Thus to prove the proposition it suffices to consider the following three cases.

Casel: Nyj(c) > Ny (f),forall f € 7. Inthis case we have tha'(c) <N(f) -1
for at least oné € X ,. First we prove, that without loss of generality, one can assume that the
bottleneck agents for configuratierare connected to a hotspot. Indeed, we have:

U (Nf(e)+1) > U(NP()),

and
u"(Na(©)) <U™(Ns() +1),

by Assumption 1.2 on utilities. Since in equilibriufrwe must haveJh(Nlh(f)) >UYNN(F)+
1) we arrive at:

U"(NP(0)+1) = UM (N(T)) = UM(NS(T) +1) = U™(NS(0))



Modeling Competition among Wireless Service Providers 21

Hence,Uh<N|h(c) + l> > UW<Nn"‘1’(c)) and thus the utility of the bottleneck agent stays the
same or improves when an agent is switched from the WANVyR0 hotspoth.

Thus if ¢ is maximizing the bottleneck among all configurations of agents choices, the
bottleneck agents could be assumed to be connected to a hotspot. However, cogsider
argmaxe« . NE(C). Then any agent connected to the hotshpots the bottleneck for con-
figurationc. Thus, since no agent connected to the WAN is the bottleneck,fare have
Uh(Nlh(c)) <UY(Np(c)). Then we have the following chain of inequalities:

UPMNP(C) < U™NB(©) < UYNE(H)+1) <  UMN(),
(@) (b)
where inequality (a) follows from the assumption of Case 1, and inequality (b) — from the fact
that f is an equilibrium. Thus)"(N"(c)) < UN(NP(f)) which means tha(c) > N(f) + 1.
Since f is a fair configuration, we havenaxc x . ij(f) < Nlh(f) + 1. But then,Nlh(c) >
maxe x,,NP(f), and henc&)"(c) < UIn(f).

Case 2: Nji(c) < Ny (f), for all f € Fn.  We first prove that no agents connected
to the WAN can be the bottleneck for configuratiorindeed, by assumption of this paragraph,
we have that there exists at least ére X ,, such thatN['(c) > N'(f) + 1. Now assume that
the agents connected to the WAN are the bottleneck for configuratibanceU™(Ny(c)) <
UN(Nf(c)), for allk € K . Then we have the following chain of inequalities:

UWNY(F) < UMNE(©) < UYNP() < UPN(T)+1).

HenceUY(NM(f)) < Uh(N|h(f) + 1) which contradicts the fact that the agents connectdyl to
in configurationf are in equilibrium. This shows that no agent connected to the WAN could be
the bottleneck for the configuratian

It follows that the agents within the hotsggf, such thah = arg maxc « NQ(C) are the bot-
tleneck. Since there exigtsuch that/'(c) > N'( ) + 1, we have thaf!(c) > maxe %, NJ (1),
by the fair structure of. This yields thatl'""(c) < Uf"™(f), which we claimed to show.

Case 3: Ny(c) = Ny(f), for all f € Fp,. First, we show again that no agent
connected to the WAN could be the bottleneck for configuratidndeed, sincém(f) + N(c)
we have that, by fair structure 6f there exists at least ohe & p, such that(c) > N(f)+1.
Assuming that the agents connected to the WAN are the bottleneck in configuratierhave
the following chain:

UY(NR(F) = U"(Nf(0)) <UM(N(0)) <UMN(F) +1).

Thus,UY(NW(f)) < Uh(Nlh(f) + 1) indicating thatf could not be an equilibrium configuration.
This contradiction shows that the bottleneck agents for configuratimist be connected to
hotspots. It is easy to see thamaxe s, NI'(C) > maxe«, NI(f) which yieldsU"(c) <
Un"(F).

S. Proof of Proposition 4.1
Prior to giving a proof of Proposition 4.1 we provide several technical lemmas.

Lemma 5.1. For any realization of the Poisson processédand " consider a service zone
associated with the WAN ARJ € 1%, Let

Li(K) = (ME=K) Ly PR(K) = (ME—K+ DLy (1.A.11)
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For anym € N we have the following a.s. limits:

HG MW,G
lim —2 =A",  |im =9 =), (1.A.12)
a—oo a—o0 a

jim 2eex8 L) — ER [Lo(K)], J@wwzmg P(K)], (1.A.13)

jim G _ A3(1— g MM lim —C _ Az Nmd?  (1.A.14)
a—o QO ? a—o O ’
J@WP(Hhke%‘“:MEZK) —1, VK >0. (1.A.15)

Proof. The limits (1.A.12) follow by ergodicity [5] of the proces& andm. One needs only
to note that the ratiu/|%”“| converges td asa — o sinced (the radius of hotspot coverage)
is bounded.
Consider now the limits (1.A.13). Note that for eaghand any fixedK, both L (K) and
P(K) are functionals of the realization of proces$#s and M2 within some a.s. bounded
region (Voronoi “flower” [12] associated with the Voronoi cvﬂ‘). ThusLg(K) andP(K) are
“local statistics” as defined in [12], and thus one can use Theorem 3.1 therein to obtain these
limits.
Now consider the limits (1.A.14). By (1.A.12) and (1.A.13) and noting that:

M= 5 L(K)lko

ke K3 ke K §
we have: .
aM
lim % = A"ED [MQ} .

Evaluating this expectation, we get:

hph h h
Ep [Mb] =Eo{ > 1{aevh}1{a<d}] 0L;al{ﬂ“(B@'ﬁil))—@}l{laSd}

acna(vy)

where the second equality uses the fact that i Vé‘ then there can be no other pointiaf
within the ball of radiuga;| centered a#;. Now by independence &1" andM? and also using
Campbell’s formula and Slyvnyak’s theorem (see e.g. [13]) we get:

Eplm] = Ej { / 1 _ )\adx} . / e M \2gx
O{ 0] 0| Jxep(oa) ~ (M"(BXX))=0} x<B(0,d)

)\a
= 21— eVl

= 3F
from which the first limit in (1.A.14) follows. The second limit in (1.A.14) follows by taking
into account the limit (1.A.13) and the first limit in (1.A.14).

Finally, to obtain the limit (1.A.15), we apply the Strong Law of Large Numbers to the sum
of random variableg, £ 1{Mh>K} to obtain:

1 h
J@w%kz Livpsk) = I|moom %OZ k=PM{>K)>0 as. (1.A.16)
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Here we used the fact that the variakifigsare i.i.d., since they depend on the number of points
of homogeneous Poisson process sampled on disjoirﬁ:&eﬂnus, at least one term in the sum
in (1.A.16) is nonzero, for sufficiently large, which proves the limit (1.A.15). O

Lemmab5.2. LetA¥ wherei = 1,2,3,4 be defined as follows:

Al =Mg", M3(K)= 3 L(K), 8§(K)= Y R(K), Af=Mg".
kEKo kEKg

Then for each, 1 <i <4 and anyC > 0 we have:

Jim P [|Ai°‘ ~E[AY)| > Cy/aloga |oga} =0. (1.A.17)

Proof. To prove the lemma we will use Chebyshev’s inequality:

o mina var [AO‘}
P[|A, E[AY] |>C\/aloga} CZaloga
First we show that foll <i < 4:
var [A%] = O(a). (1.A.18)

Indeed,A = Mg*® is just a Poisson random variable with average that scales lineady in
Hence (1.A.18) is satisfied for= 1. To obtain the bound on the variancesdfandA§ we use
Lemma 1 in [12], which yields:

var [0 (K)] = O(a), var[a(K)] = O(a).
Finally for the variance omg" observe that
Mg" = Mg —25(0).
Since the variances of both terms on the right@fe) we get:
var [AY] = O(a).

Now using Chebychev’s inequality and (1.A.18) we obtain, for @ny 0,

a u (a) R
(\A —E[A7]] >C\/aloga) alogu) — 0, whena — .
O

Lemma 5.3. Under the scaling Assumption 4.1, the equilibridghin Sg”“ is unique and fair
w.h.p..

Proof. Using Lemma 5.2 we have that, eventuaMga >N as. asa — o, Taking into
account Assumption 4.1, the conditions of Proposition 3.2 hold w.h.p. Using Proposition 3.2
yields the statement of the lemma. O

Lemma 5.4. For any equilibrium configuratiorfs' in %”G we have that:

maxNk(f )< maka7 w.h.p. (1.A.19)
ke kg ke x§
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Proof. Note that (1.A.19) has a strict inequality. Thus (1.A.19) implies that the largest number
of agents connected to any hotspot witBfin equilibrium f§ is strictly less than the maximum
number of agents in any one of the hotspots — at least asymptotically. We prove the lemma by
contradiction. Suppose that there exists a sequéhee {0 > 0|limp_« 0n = 0} with the
following property. For anya € &8, f§* is such that for somé& € K g we haveNlﬁ(fO“) =

MaXc %8 ML‘ with probability greater thae. Then, for anya € &&:

(M) < Ng“(18'), (1.A.20)

since no agent desires to switch to the WAN Wpfrom the hotspoby«. Now, note thatf{* is
fair w.h.p, by Lemma 5.3 and thus:

MP — 1< NP(f§) <M,

where we took into account that there arekie X § such thaM] > ML This yields, that at
most one agent within each hotsypt for k € 7(8 selects the WAN, thus

No'® (fg) < ME“ +H™, (1.A.21)
Now, using Assumption 4.1 and Lemma 5.1, the inequalities (1.A.20) and (1.A.21) imply:
i (Mf}) < AN \h (1.A.22)
Taking into account that by Lemma 5.1 and Assumption 4.1:
liminfg_e maxMh:oo, lim j(N) =, as.
o Mo k N j(N)

we find that the inequality (1.A.22) is violated with probability tending to ias «. Thus,&#
can not exist for ang > 0, which proves the lemma. O

Lemma5.5. Consider a configuratiofi for service zon&)'® and letN3( f') = mae ., NP (FS).
For anya > 0, a necessary and sufficient condition fiff to be an equilibrium w.h.p. is that
fs is a fair configuration that obeys either of the following:

NRS(fS) =0, J%(1) > M§“, (1.A.23)

NBS(TE) =1, 9% (NRS(TE)) — 1< Ng(1g) < 37 (NBS(i$) +1)  (LA24)
whereNP(f&) = Nva(f&) for all k € K&, such thaM! > Nikay( £&), or:
NRS(EE) =1, 3% (NRS(TS) ) ~ 1< NG (1) < 3° (NRS(fe)) . (L.A25)

wheredk, | € K8, such thaMf, M > NS f&), andMf! = NiRd( f&), M = NS &) — L.

Proof. We already proved in Lemma 5.3 that all equilibriaE{ﬁ‘l“ have the same fair charac-

terizations w.h.p. In casﬁﬁigx( f§') = 0 there are no agents connected to any hotspog'in
The necessary and sufficient condition for that, as follows from the inequality (1.2), is given
by (1.A.23).

Consider the casiifoy( f{') > 1. First assume that for al € X §, such thalfoy( i) we

have thatN(f&) = Nhva( f&). By Lemma 5.4 we havBifia &) < maxe 4, MP), and thus we

can use the equilibrium conditions (1.1) to obtain (1.A.24).
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Now assume, instead, that there exist skdhe X§, so thatM,M[' > NS f&'), and
MP = Nira(F&), M = NJS,(£&) — 1. For the hotspots havinghay( f&') — 1 agents connected
to them in configuratiorfs', via equilibrium conditions (1.1) we get:

J (N,Qvgx( f&) — 1) — 1< NMO(FE) < 3@ <N§1‘gx( fé‘)) , (1.A.26)
while for the hotspots havinyr?{g)(( fs') agents connected to them:

5 (N,mgx( fo")) — 1< N (@) < 9@ <NQ{§X( )+ 1) , (1.A.27)
Now, using monotonicity 08%(-), by combining (1.A.26) and (1.A.27) we get (1.A.25). O

Proof of Theorem 4.1.  Let f denote an equilibrium configuration in the service zone
S of the WAN APwg € r¥. By Lemma 5.3 such configurations have equivalent and fair

characterizations w.h.p, which gives Part 1 of the theoreml\ﬂé&: MaXc 58 NE(f) where

f € 75" is any fair equilibrium configuration. In what follows we will consider two cases that
depend on whether the density of agexitss less than the valug1). Our goal is to show that
thelim g N &) exists.

Case 1: A2 < j(1).  We will show that\® < j(1) if and only if:
: ha _

Ollnw Nmiax= 0.
Indeed, the “only if” part follows from the condition (1.A.23) by dividing both sidesobgnd
taking limits asa — o. Now using the limit (1.A.12) we obtain thmﬂ{gx: O w.h.p. implies
A< (D).

Next we prove that ih® < j(1) thenNR{gX: Ow.h.p. Indeed, by Lemma 5.1 we know that:
Mg =A% +e(a),

where|e(a)| = O (y/aloga). But then, for sufficiently larget we have:

Mo <3%(1),
which, by Lemma 5.5 implieBIfi%, = 0 w.h.p.

Case 2: A > j(1).  Wefirst prove thaNf3 has a limit oncex — . Consider any se-
quence, := {an|n € N}, wherelimn_.. 0 = 0. We define the following disjoint subsequences
of &:

&= {a| acf 1<N < kmaxM,’(1 andvk € K§, s.t. M > NS NP(f9) = N,'}]gx}
€K§

& = {a| acé 1<NRI < maxML1 , and
ke K §

K, € K, s.t. ME,MP > NRS - andNP(F %) = NS NP(F o) = Nfkg — 1}

g3=<0a|ack 1<NP — maxmP
max k
ke K
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&= {a| ack, NQigX:O}

Clearly, & = Ui4:1E.i- However, by Lemma 5.4, the sequeriegis finite. Moreover, we have
proved above that whex? > j(1) the sequencgy is finite too. Thus, asymptoticall§, consists
only of the members of the sequendgsand&,. Note that eitheg, or &, or both&; and&,
have to be infinite, sinc& s infinite.

By definition of & and&,, we have, thamax. 4s Mf! > NS, whena € £, U, Thus,

if any of &1 or &2 is finite, to prove the statement of the theorem we have to shovN!?a&{
converges along the other infinite sequence. If fatlnd&, are infinite, then we need to show
thater?q’gx is asymptotically the same along each subsequence, and in addition that:

H hao _ ; h,a
lim  Ngax= Iim  Ngax
acéy, a—o acgy, a—w

We will consider first the sequenég and assume that it is infinite. We will show that:

lim  NRS =Ky, (1.A.28)

aEy, a—oo

whereKj is independent ofi. We argue by contradiction. In particular, assume that there exist
arbitrary largey,d € &1 such thaNrT{Zx;é Nﬂ{gx. Without loss of generality lgt< 8, and consider
the equilibrium conditions il‘%"‘a. By Lemma 5.5 we have that:

3 (NBS) — 1< N(1$) < P (NS4 1) |
Now multiplying these inequalities by/d, and using Assumption 4.1, we obtain:
3 (NB2) —v/5 < /NG (19) < 3¥ (NB2,+1) .
Note that by Lemma 5.1 we have:
V/ENGO(16) = (Ae ™ 4 AED [RO(NR2)| ) +e1(1.8).
where, by Lemma 5.2g1(y,8)| = O (yW) = O(y/ylogy). This yields:
» (N,*;;gx) 1<y (}v’j‘e—*“"“'2 +AER {PS(NQ;S D e (v, 8) <Y (N!};Sﬁ 1) . (1.A.29)

Now consider a fair configuratiofy for service zoneg)", such thamax scs Ni'(fy) = N

and such that for ak € %}, for whichmf! > NPY we haveN!(f)) = NS, Clearly, in this case
Lemma 5.1 and Lemma 5.2 yield:

N = (Aee ™ 4 AR (N2 ) + e2(y),
where|ex(y)| = O(\/Vlngy). By Assumption 4.1 (item 4) we have, for all intedér
N2 ML AERS (K) # (K).,
which then translates the inequalities (1.A.29) into:

i (NR&) < A2e ™™ 1 AMESRS (NRS,) < j (NRdc+1) (1.A.30)
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Now note thates (y,d) + €2(y)| = O (v/ylogy) = o(y). Hence, using (1.A.29), one gets
(D) —v/3 < NgY(7) < ¥ (NB&+1)

oncey < 0 are selected large enough. By Lemma 5.5 we havefgﬁﬂ a fair equilibrium that
is different fromfa’. By Lemma 5.3 this can not happen w.h.p. Thus we obtain that

lim NP =K
aeg;,a—oo

for some positive integef;.

Now, if & is finite, we are done, since asymptoticaflyconsists only of; and we have
already shown that along; the value ofNrr,'{gx has a limit. Now we will prove that i€, is
infinite, then the value oNr'ﬁgx along &, also converges to a limit. Take agye &, then, by
Lemma 5.5 we have, that

I (N — 1< NgY(FY) < 3% (NI -
Dividing these inequalities by, by Assumption 4.1, we have:
. Ny (FY)
N — 1y L) < i (1.A.31)

We now show thaN,}%’Zx< Ko for someKq independent of. Indeed, otherwise, there exists a
subsequencgs C &, with lim NR{ZX: c. Now using Lemma 5.1, we have that

No'(Y)

y—o.yegs

<A im  EG[RY (NRk) | =A% N

lim SURy 0o yets Voot

At the same time we have that
lim (N = o,
y—o,ye€s
which means that the inequalities (1.A.31) could not be satisfied along the subse§gence
Thus we have a contradiction, aalg, such thaNrTq’Zx< Ko.

Thus the se{NQ{ZX\ye &2} is finite, hence i€y is infinite, at least some values from this set
must realize infinitely often alongp. Consider any valuK which is achieved infinitely often
alonggy, i.e. there exists a subsequergeC &, with sup{yly € &g} = c and for anyy € &g,
NY. — K. Note thatNy"Y(f)) must satisfy:

Co Go
ke K} ke XY

A h ) h
Mg+ S (M- K)ok} < N(f)) <MEV+ 5 (M —K+1)Lpypoy Whop.,
since fa’ is asymptotically fair w.h.p. Dividing these inequalities fayand comparing to in-
equalities (1.A.31), one finds thEtmust satisfy:

I(K) £ 22" L APED [Lo(K)] < j(K) < A2 ™ L APED[Py(K)| 2 u(K),  (1.A.32)

where we used Lemma 5.1. Note théK) =1 (K +1) and thus the interval$(K), u(K)] are dis-
joint for different integelK. Moreover Jg _4 (I(K),u(K)] = (0,u(1)]. Sincej(K) is increasing
in K andlimk .. j(K) = o, there exists exactly one integer solution to the inequalities (1.A.32),
since we assumed

(1) <%,
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andu(l) = A2, But then the value ONQ,’ZX is asymptotically unique w.h.p., whane &, and
Y — 00,

We are left to show that if botg; and&, are infinite, then the asymptotic valuks andK»
alongé&i andé&, respectively satisfiK; = K,. Observe that the condition (1.A.30) implies for
Kyq:

(K1) <u(Ky) < j(Ki+1).

Now, sinceKy is a unique integer solution to (1.A.32) we obtain tat= Kj. SinceNr?fgx( f§) =

K1 w.h.p. whena € &1 and Nr';{gx( fg') = Ko = K1 w.h.p whena € &5, we obtain Part 2 of the
theorem. Lastly, Part 3 of the theorem follows from the above analysis.

Notes

1. Amore general case with utilities dependent on congestion and distance from a serving AP is treated
in [11].

2. Note that we use lettdd with different sub- and super- scripts to refer to the actual number of agents
that fall within different sets, while we use the lettéto refer to the number of agents within different sets
to refer to the agentactually connectetb particular APs.

3. The ambiguity arises in the case when for a particular fair configurat®r¥, we have0d < Nl'j =
Km < max ML‘, for all k € X, and for someK, > 0. Then the upper surface of the “slicing plane”,
associated with this configuration can be drawn at either the l&yets Ky + 1.

4. Since, as we alluded above, the WAN service might be degrading slower with the number of con-
nections than that of hotspots, the assumption that (1.5) holds may be reasonable.

5. Thisis, perhaps, not a bad assumption since WAN network would be carefully designed and optimized

6. See e.g. [9] for a nice comparison of WiFi vs. 3G technologies.
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